FUSION 2-CATEGORIES WITH NO LINE OPERATORS ARE GROUPLIKE

نویسندگان

چکیده

Abstract We show that if ${\mathcal C}$ is a fusion $2$ -category in which the endomorphism category of unit object or , then indecomposable objects form finite group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Half-line Schrödinger Operators with No Bound States

We consider Schödinger operators on the half-line, both discrete and continuous, and show that the absence of bound states implies the absence of embedded singular spectrum. More precisely, in the discrete case we prove that if ∆+V has no spectrum outside of the interval [−2, 2], then it has purely absolutely continuous spectrum. In the continuum case we show that if both −∆+V and −∆−V have no ...

متن کامل

The 2-categories of G-categories and of G-graded Categories Are 2-equivalent

Given a group G, we prove that the 2-category of small categories with G-action and G-equivariant functors is 2-equivalent to the 2-category of small Ggraded categories and degree-preserving functors.

متن کامل

Fusion Categories Of

We classify semisimple rigid monoidal categories with two iso-morphism classes of simple objects over the field of complex numbers. In the appendix written by P. Etingof it is proved that the number of semisimple Hopf algebras with a given finite number of irreducible representations is finite.

متن کامل

Non-cyclotomic Fusion Categories

Etingof, Nikshych and Ostrik ask in [8, §2] if every fusion category can be completely defined over a cyclotomic field. We show that this is not the case: in particular one of the fusion categories coming from the Haagerup subfactor [2] and one coming from the newly constructed extended Haagerup subfactor [3] can not be completely defined over a cyclotomic field. On the other hand, we show that...

متن کامل

MATROIDS WITH NO (q + 2)-POINT-LINE MINORS

It is known that a geometry with rank r and no minor isomorphic to the (q + 2)-point line has at most (qr − 1)/(q − 1) points, with strictly fewer points if r > 3 and q is not a prime power. For q not a prime power and r > 3, we show that qr−1 − 1 is an upper bound. For q a prime power and r > 3, we show that any rank-r geometry with at least qr−1 points and no (q + 2)-point-line minor is repre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The Australian Mathematical Society

سال: 2021

ISSN: ['0004-9727', '1755-1633']

DOI: https://doi.org/10.1017/s0004972721000095